Rational Maps are d-adic Bernoulli
نویسنده
چکیده
منابع مشابه
Higher Order Degenerate Hermite-Bernoulli Polynomials Arising from $p$-Adic Integrals on $mathbb{Z}_p$
Our principal interest in this paper is to study higher order degenerate Hermite-Bernoulli polynomials arising from multivariate $p$-adic invariant integrals on $mathbb{Z}_p$. We give interesting identities and properties of these polynomials that are derived using the generating functions and $p$-adic integral equations. Several familiar and new results are shown to follow as special cases. So...
متن کاملOn the Identities of Symmetry for the Generalized Bernoulli Polynomials Attached to of Higher Order
Let p be a fixed prime number. Throughout this paper, the symbols Z, Zp, Qp, and Cp denote the ring of rational integers, the ring of p-adic integers, the field of p-adic rational numbers, and the completion of algebraic closure of Qp, respectively. Let N be the set of natural numbers, and Z N ∪ {0}. Let νp be the normalized exponential valuation of Cp with |p|p p−νp p p−1 see 1–24 . Let UD Zp ...
متن کاملArithmetic Identities Involving Bernoulli and Euler Numbers
Let p be a fixed odd prime number. Throughout this paper, Zp, Qp, and Cp will denote the ring of p-adic rational integers, the field of p-adic rational numbers, and the completion of algebraic closure of Qp, respectively. The p-adic norm is normalized so that |p|p 1/p. Let N be the set of natural numbers and Z N ∪ {0}. Let UD Zp be the space of uniformly differentiable functions on Zp. For f ∈ ...
متن کاملMultivariate P-adic L-function
In the recent, many mathematicians studied the multiple zeta function in the complex number field. In this paper we construct the p-adic analogue of multiple zeta function which interpolates the generalized multiple Bernoulli numbers attached to χ at negative integers. §1. Introduction Let p be a fixed prime. Throughout this paper Z p , Q p , C and C p will, respectively, denote the ring of p-a...
متن کاملDerivation of Identities Involving Bernoulli and Euler Numbers
Let p be a fixed odd prime. Throughout this paper, Zp,Qp,Cp will, respectively, denote the ring of p-adic integers, the field of p-adic rational numbers, and the completion of algebraic closure of Qp. The p-adic absolute value | |p on Cp is normalized so that |p|p 1/p. Let Z>0 be the set of natural numbers and Z≥0 Z>0 ∪ {0}. As is well known, the Bernoulli polynomials Bn x are defined by the ge...
متن کامل